Tutorial for programming the e-puck robot using the bootloader via bluetooth

Francesco Mondada and Michael Bonani Autonomous Systems Laboratory Ecole Polytechnique Fédérale de Lausanne (EPFL) Project web page:http://www.e-puck.org

March 23, 2006

1 Introduction

To run this tutorial you need to have an e-puck with a bootloader on it and a computer equipped with Bluetooth (or a USB Bluetooth adapter). If you do not have the bootloader on your epuck robot, you have to program it using for instance the ICD2 programmer (please look at the corresponding tutorial).

The goal of this tutorial is to learn how to program the e-puck miniature mobile robot using the bootloader via a Bluetooth connection from a Windows environment. It is based on version 7.21 of MPLAB IDE software and on version 1.33 of the C30 GNU C compiler, both running under Windows. Source files are associated to this tutorial and should be available at the same place where you downloaded this file.

Before running this tutorial you have to download and install the MPLAB IDE software and the C30 GNU C compiler, both from microchip. MPLAB IDE is a free program. The C30 compiler is a commercial program but can be used with very few restrictions in student mode for free. You can download these programs in the section Development Tools of the web site http://www.microchip.com.

You have also to download the Tiny Bootloader program on the web site

```
http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm.
```

2 Tutorial A: FlashLed

This tutorial is built around the program ledtest.c written in C. The program just flashes a LED. The source file is used with a linker script file (p30f6014a.gld), an initialization file and its definition files (init_port.c, init_port.h and epuck-ports.h) to form a complete project. The tutorial is a simple project. More complex projects might use multiple assembler and C source files as well as library files and precompiled object files. For simplicity, this tutorial uses only two source files. There are four steps to this tutorial:

- 1. Create a project in MPLAB IDE.
- 2. Compile and link the code.
- 3. Program the robot via Bluetooth.

2.1 Creating the project

The first step is to create a project and a workspace in MPLAB IDE. Usually, you will have one project in one workspace.

A project contains the files needed to build an application (source code, linker script files, etc.) along with their associations to various build tools and build options.

A workspace contains one or more projects and information on the selected device, debug tool and/or programmer, open windows and their location, and other IDE configuration settings.

MPLAB IDE contains a Project Wizard to help create new projects. Before starting, create a folder for the project files for this tutorial (C:\Tutorial is assumed in the instructions that follow). From the TP web pages, copy the zipped file into your C:\Tutorial folder and decompress it.

2.1.1 Select a Device

- 1. Start MPLAB IDE.
- 2. Close any workspace that might be open (File>Close Workspace).
- 3. From the Project menu, select Project Wizard.
- 4. In the Welcome screen, click Next> to go to the Project Wizard Step One dialog (Figure 1)

Figure 1: Project wizard, step 1, select a device.

5. From the Device: pull-down list, select dsPIC30F6014A and click Next>. The Project Wizard Step Two dialog displays (see Figure 2).

Step Two: Select a language to	oolsuite		Ē
		_	ď
Active Toolsuite: 🛛 🕅	icrochip C30 Toolsuite (Support	ts 24F/30F/33F)	
Toolsuite Contents			
MPLAB ASM30 As MPLAB C30 C Cor MPLAB LINK30 0 LIB30 Archiver (nir	ssembler (pic30-as.exe) npiler (pic30-gcc.exe) bject Linker (pic30-ld.exe) >30-ar eve)		
Location			
C:\Program Files\Micr	ochip\MPLAB C30\bin\pic30-a	is.exe	Browse
Help! My Suite I:	sn't Listed!	☐ Show	all installed toolsuites

Figure 2: Project wizard, step 2, select language toolsuite.

2.1.2 Select Language Toolsuite

- 1. From the Active Toolsuite: pull-down menu, select Microchip C30 Toolsuite. This toolsuite includes the compiler, assembler and linker that will be used.
- 2. In the Toolsuite Contents block, select MPLAB ASM30 Assembler (pic30-as.exe).
- In the Location block, click Browse... and navigate to:
 C:\Program Files\Microchip\MPLAB C30\bin\pic30-as.exe
- 4. In the Toolsuite Contents block, select MPLAB C30 C Compiler (pic30-gcc.exe).
- 5. In the Location block, click Browse... and navigate to:C:\Program Files\Microchip\MPLAB C30\bin\pic30-gcc.exe
- 6. With MPLAB LINK 30 Object Linker (pic30-Id.exe) selected in Toolsuite Contents, click Browse... and navigate to: C:\Program Files\Microchip\MPLAB C30\bin\pic30-ld.exe
- 7. Click Next> to continue. The Project Wizard Step Three dialog displays (see Figure 3).

roject Wizard					×
Step Three: Name your project				36	<i>Y</i> @
Project Name					
MyProject					
Project Directory					
C:\Tutorial				Browse	
	< Back	Next>	Cancel	Help	1
					_

Figure 3: Project wizard, step 3, name your project.

2.1.3 Name Your Project

- 1. In the Project Name text box, type a name for your project, for instance MyProject.
- 2. Click Browse... and navigate to C:\Tutorial (or the directory you alve chosen) to place your project in the Tutorial folder.
- 3. Click Next> to continue. The Project Wizard Step Four dialog displays (see Figure 4).

2.1.4 Add Files to Project

- 1. Locate the C:\Tutorial folder and select the testled.c file.
- 2. Click Add \gg to include the file in the project.
- 3. Add in the same manner the files init_port.c, init_port.h and epuck-ports.h.
- 4. Go to the C:\Program Files\Microchip\MPLAB C30\support\gld folder and select the p30f6014a.gld file.

	Damaira		- 10 L 1001 10_	
	Dansau			
-	Hemove			
		•)
		Ц		

Figure 4: Project wizard, step 4, add files to project.

- 5. Click Add \gg to include the file in the project. There should now be two files in the project.
- 6. Click Next> to continue.
- 7. When the summary screen displays, click Finish.

After the project wizard completes, the MPLAB IDE project window shows the testled.c and init_port.c files in the Source Files folder, the init_port.h and epuck-ports.h files in the Header folder and the p30f6014a.gld file in the Linker Scripts folder.

Check that you have the correct include path under Project>Build Options ...>Project as illustrated in figure 5.

d Options For Project "MyProject.mcp"	?
eneral ASM30/C30 Suite MPLAB ASM30 MPLAB C30 MPL	.AB LINK30
Output Directory, \$(BINDIR):	
	Browse
Intermediates Directory, \$(TMPDIR):	
	Browse
Assembler Include Path, \$(AINDIR);	
	Browse
Include Path, \$(INCDIR);	
C:\Program Files\Microchip\MPLAB C30\support\h\	Browse
Library Path, \$(LIBDIR):	
C:\Program Files\Microchip\MPLAB C30\lib	Browse
Linker-Script Path, \$(LKRDIR):	
	Browse,
Help Suite Defaults	
OK Cancel	Apply

Figure 5: Path settings.

A project and workspace has now been created in MPLAB IDE. MyProject.mcw is the workspace file and MyProject.mcp is the project file. Double-click the testled.c file in the project window to open the file.

2.2 Building the Code

In this project, building the code consists of compiling the testled.c file to create an object file, testled.o, compiling the init_port.c file to create an object file, init_port.o, and then linking the object files to create the testled.hex and testled.cof output files.

2.2.1 Compiler parameters

1. Under Project>Build Options ...>Project please select the MPLAB LINK30 tab to view the linker settings (see Figure 6 left).

ild Options For Project "ddd.mcp"	Build Options For Project "ddd.mcp"
General ASM30/C30 Suite MPLAB ASM30 MPLAB C30 MPLAB LINK30	General ASM30/C30 Suite MPLAB ASM30 MPLAB C30 MPLAB LINK30
Categories: General	Categories: General
Generate Command Line	Generate Command Line
Heap size: 512 bytes Allow overlapped sections	Generate debugging information
Min Stack Size: Dilles El Link for ICD2	Support all ANSI-standard programs
	I Make warnings into errors
- Sumbol Definitions	- Macro Definitions
Add.	Add 1
Hemove	Hemove
Remove All	Remove All
Inherit global settings Restore Defaults	Inherit global settings Restore Defaults
-heap=512 -Map="\$(TARGETBASE).map" -o"\$(TARGETBASE).\$(TARGET	-g-Wall
Line Alternate Cattings	Line Alternate Sattings
-"INTADGETDAGE INTADGETCI (CEV/II Man - "INTADGETDAGE (2002)	
Lo attende reactation control anale attende reactilitati	1.8
OK Cancel Apply	OK Cancel Apply

Figure 6: Left: MPLAB LINK30 build options. Right: C30 compiler options.

- 2. Add 512 in the Heap size box.
- 3. Please select the MPLAB C30 tab to view the compiler settings.
- 4. Check the box for Additional warnings (see Figure 6 right).
- 5. Click OK again to save these changes. The project is now ready to build.

2.2.2 Set Up the Device Configuration

- 1. Use the Configure>Configuration Bits menu to display the configuration settings.
- 2. Set up the configuration bits as shown in Figure 7. The highlighted configuration settings may need to change to the these values:

Oscillator: $\mathbf{XT} \mathbf{w} / \mathbf{PLL} \mathbf{8x}$

Watchdog Timer: Disabled

Address	Value	Category	Setting	
F80000	C706	Clock Switching and Monitor	Sw Disabled, Mon Disabled	
		Oscillator	XT w/PLL 8x	
F80002	003F	Watchdog Timer	Disabled	
		WDT Prescaler A	1:512	
		WDT Prescaler B	1:16	
F80004	87B3	Master Clear Enable	Enabled	
		PBOR Enable	Enabled	
		Brown Out Voltage	2.0V	
		POR Timer Value	64ms	
F8000A	0007	General Code Segment Code Protect	Disabled	
		General Code Segment Write Protect	Disabled	
F8000C	C003	Comm Channel Select	Use PGC/EMUC and PGD/EMUD	

Figure 7: Configuration settings.

2.2.3 Build the Project

- 1. Select Make>Project menu to display the Build Output window (Figure 8).
- 2. Observe the progress of the build.
- 3. When BUILD SUCCEEDED displays you are ready to program the robot.

Figure 8: Build output window.

2.3 Programming the e-Puck robot

The e-puck robot will be programmed via a bluetooth connection. To do so, the first step is to pair the e-puck robot with your computer.

Bluetooth Setup	Welcome to the Bluetooth Setup Wizard This Wizard will help you set up your Bluetooth environment. What work than the to do?	e-puck. 0202 08:00:17:2d:47:e8 Unknown: Major(0), M	ine(0
577	C Tknow the service I want to use and I want to find a Bluetooth device that provides that service.		lan and a second second second
P	 I want to find a specific Bluetooth device and configure how this computer will use its services. I want to configure the Bluetooth services that this computer will provide to remote devices. 	Search Again If device you are looking for is not Some devices require to press a sp	Show all devices
	C I want to change the name and/or device type that this computer displays to other Bluetooth devices.		(Back Next) Cancel

Figure 9: Left: Initial choice on the Bluetooth Setup Wizard. Right: Select your e-puck robot in the bluetooth devices found by your computer.

	🖳 Bluetooth Security Setup 🔀
1202 0202	Bluetooth Pairing Procedure The Pairing Procedure generates a secret key that will be used for authentication and encryption in future connections to this device.
	To pair with a remote device, the remote device must be in parable mode and you must know the PIN code. For information about the PIN code of the remote device, refer to that device's documentation. For a blief description of pairing click Pairing Help. For more
A see a second	detailed information, consult your user's manual.
	Initiate Pairing
	To begin the pairing process, enter the PIN code and click Initiate Pairing.
	PIN Code: ••••
E	< Back Skip Pairing Initiate Paring Cancel

Figure 10: Left: The identification number (here 0202) of each e-puck is written on the metallic plate under the speaker extension. Right: Enter the pin code which is identical to the e-puck number (here 0202).

2.3.1 Pairing the e-Puck robot on bluetooth from "My Bluetooth places"

If you have in your system the access to "My Bluetooth places", please follow this section. If you do not have "My Bluetooth places", please refer to the next section.

- 1. Switch On your e-puck robot. The green power LED should become on.
- 2. On your computer, please start the Bluetooth Setup Wizard, as shown in figure 9 left.
- 3. As illustrated in figure 9 right, please choose the e-puck_XXXX device where XXXX is the number of your e-puck. The number is written on the metallic plate under the speaker extension. On figure 9 XXXX means 0202.
- 4. As illustrated in figure 10 right, please enter the pin code to access to your e-puck. The default pin code is the same number as the number you have in the e-puck identificator. In the example given here, for the e-puck number 0202 the pin code is 0202.
- 5. As illustrated in figure 11 left, select the COM service of the e-puck robot.
- 6. As illustrated in figure 11 right, select the Windows COM port where your want to have your e-puck robot. In the example the choosen port is COM6. You will have to give this port to the program accessing to e-puck.
- 7. The pairing process should be terminated.

Depending on the Bluetooth drivers you have, the activation of the Bluetooth connection can be made by the program accessing it or has to be made manually by accessing to My Bluetooth places and double-clicking on the icon corresponding to the connection, as shown on figure 12.

luetooth Service Selection	Bluetooth Properties	
Select the services you are interested in. The following services are available through the selected Bluetooth Device.	General	
Select the service that you want to access on the selected device.	e-puck_0202_COM1	
🔳 🗞 сомі	Startup Automatically	Secure Connection
Establish a virtual serial port connection with a remote Bluetooth device. The connection can then be used by any application that supports the COM port number assigned.	e .	
	COM Port: COM6 💌	
Refresh	2	

Figure 11: Left: Select the COM service of the e-puck robot. Right: Select the COM port where you want to have the e-puck robot.

★ My Bluetooth Places	_0×
File Edit View Bluetooth Favorites Tools Help	2
😮 Beck + 🕑 - 😥 🔎 Search 🌾 Folders 🔟 -	
Address 😵 C:(Program Files\Del\Bluetooth Software\My Bluetooth Places	💌 🛃 GO
e-puck_0202	
e puch_2020_COMI Connected: COM6 Serial Port Device	
My Device	
Bluetooth Exchange Folder Bluetooth Exchange Folder Wew the services provided by Search for nearby Bluetooth d	
Entire Bluetooth Neighborhood Display previously found Bluet Entire devices, connection	

Figure 12: Activate the bluetooth connection by double-clicking on the icon corresponding to the connection.

2.3.2 Pairing the e-Puck robot on bluetooth without "My Bluetooth places"

If you have in your system the access to "My Bluetooth places", please refer to the previous section.

- 1. Switch On your e-puck robot. The green power LED should become on.
- 2. On your computer, please start the Add Bluetooth Device Wizard by clicking on the bluetooth icon on the bottom right of your desktop. You should get a window as shown in figure 13 left.
- 3. As illustrated in figure 13 right, please choose the e-puck_XXXX device where XXXX is the number of your e-puck. The number is written on the metallic plate under the speaker extension. On figure 13 XXXX means 0064.
- 4. As illustrated in figure 14 left, please enter the pin code to access to your e-puck. The default pin code is the same number as the number you have in the e-puck identificator. In the example given here, for the e-puck number 0202 the pin code is 0202.
- 5. As illustrated in figure 14 right, the wizard will choose the COM service of the e-puck robot. The COM service to use is the **Outgoing** one, in figure 14 right it is COM3.
- 6. The pairing process should be terminated.

Figure 13: Start the "Add Bluetooth Device Wizard" by clicking on the bluetooth icon on the bottom right of your desktop. Then select your device (here the 0064).

d Bluetooth Device Wizard	Add Bluetooth Device Wizard
Do you need a passkey to add your device?	Completing the Add Bluetooth Device Wizard
To answer this question, refer to the "Bluetooth" section of the documentation that came w your device. If the documentation specifies a passkey, use that one.	nth The Bluetooth device was successfully connected to your compute: Your computer and the device can communicate whenever they are near each other.
O Choose a passkey for me	These are the COM (serial) ports assigned to your device. Outgoing COM port: COM3
O Use the passkey found in the documentation:	Incoming COM port: COM4
Let me choose my own passkey: 0202	Learn more about Bluetooth COM ports.
O Don't use a passkey	
You should always use a <u>passkey</u> unless your device does not support one. We recommend using a passkey that is 8 to 16 digits long. The longer the passkey, the	
THORE SECURE & WHILDE.	To close this wizard, click Finish.
< Back Next > Ca	ncel KBack Finish Cancel

Figure 14: Enter the pin code corresponding to the number of your e-puck robot. The wizard will set a COM port corresponding to your robot.

2.3.3 Programmin the e-puck flash

- 1. Start the Tiny Bootloader program. You should get the window of figure 15.
- 2. Click on Browse to look for your .hex file. You should get the window of figure 16.
- 3. Select the COM port corresponding to your e-puck. If the COM port is not in the list, type it.
- 4. Click on the Write Flash button. When the program display the connection, the orange Bluetooth led on the e-puck should be on and you have five second to push on the blue reset button on the top of your e-puck. You can change this timing in the options.
- 5. When programmed, the LED0 should start blinking.

PIC Tiny Boot	pader			T	Browse
Comm	Log	Options]	[erminal]		Diomse
115200 💌	Interface contact: http://wv	to TinyBoo claudiu.chi ww.etc.uga	otLoader, v1.9.1 culita@ugal.ro I.ro/cchiculita/s	oftware/picbootlo	ader.htm
<u>W</u> rite Flash					
CheckPIC					
j					*

Figure 15: Initial window on the Tiny Bootloader.

Open				? ×	
Look in:	tutorial		🗢 🗈 💣 📰 •		
My Recent Documents Desktop My Documents	Test.hex				Ditware/picbootloader.htm.
My Network Places	File name: Files of type:	test.hex ".hex Dpen as read-only	•	Open Cancel	

Figure 16: Browse to find the hex file corresponding to your project.

2.4 Modify and test new code

Change the code to:

- Make a loop switching ON and OFF the 8 LEDs in a sequential way (LED0 ON and others off, then LED1 ON and others OFF and so on).
- Read the four bits coming from the "running mode selector" and replicate the value on four LEDs.

3 Tutorial B: Timer Interrupt

3.1 Introduction

The management of real time delays by loops of **nop** instructions cannot work with the presence of interrupts that can modify the delay generated. The management of real-time events by interrupt routines under the control of a timer is much more efficient and widely used. It is therefore important to know how to use this mechanism and how to implement it in C.

3.2 LED blinking by interrupt

The blinking of a LED can be implemented in a reliable way by using a timer that generates an interrupt in a regular way. The interrupt routine can then switch on and off the LED, ensuring the blinking effect. The source code for the initialization of the interrupt and the interrupt routine are provided with this document. Please read and understand the code, compile it and test it on the robot.

3.2.1 Sequential blinking LEDs

Make a loop switching ON and OFF the 8 LEDs in a sequential way (LED0 ON and others off, then LED1 ON and others OFF and so on) using the timer interrupt routine.

3.2.2 Blinking of two LEDs

Please use a second timer, for instance the number 4, to blink LED1 at a frequence of 3 Hz.

4 Tutorial C: Motor control by interrupt

Figure 17: Activation sequence for the motor 1 control signals.

The e-puck robot is equipped with two stepper motors. These motors have two windings. The power in these windings is controlled by the signals motXa, motXb, motXc, and motXd (with X being 1 or 2). For motor 1, for instance, the signals mot1a and mot1b control the power supply of the first winding, mot1c and mot1d the power supply of the second winding. Figure 17 shows how these four signals have to be activated to make the motor turn. Every signal transition is considered as a step. A rotation of 360° of the wheel corresponds to 1000 steps (20 steps per revolution of the motor combined with a gear reduction of 50:1.

Try to implement the control of the two motors by interrupt of the timers 4 and 5. Please give to the two motors a fixed speed to make the robot move at 10 mm/s.

Compare your code with the code implemented in motors.c provided with the libraries of the e-puck robot.

Start looking at the other code you can find in the libraries of the e-puck robot.