
e-Puck Range & Bearing Board
Álvaro Gutiérrez & Alexandre Campo

November 13, 2009

Contents
1 Introduction 3

1.1 What you can do with it . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 How to get it work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Where to get it . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Hardware 4
2.1 Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Emission Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Reception Module . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Communication Module . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Board Con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.1 TV Remote Receiver . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 E-puck Range & Bearing to e-puck UART communication 7
2.5.3 E-puck Range & Bearing to PC UART communication . 7

2.6 Di�erent Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Installing the E-puck Range & Bearing Board 9

4 Firmware 9

5 e-RandB Libraries 10
5.1 Common Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 e_init_randb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 I2C Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.1 e_randb_set_range . . . . . . . . . . . . . . . . . . . . . 11
5.3.2 e_randb_set_calculation . . . . . . . . . . . . . . . . . . 11
5.3.3 e_randb_store_light_conditions . . . . . . . . . . . . . . 11
5.3.4 e_randb_store_data . . . . . . . . . . . . . . . . . . . . 12
5.3.5 e_randb_send_data . . . . . . . . . . . . . . . . . . . . . 12
5.3.6 e_randb_send_all_data . . . . . . . . . . . . . . . . . . 12
5.3.7 e_randb_get_if_received . . . . . . . . . . . . . . . . . . 12

1



5.3.8 e_randb_get_data . . . . . . . . . . . . . . . . . . . . . . 12
5.3.9 e_randb_get_range . . . . . . . . . . . . . . . . . . . . . 13
5.3.10 e_randb_get_bearing . . . . . . . . . . . . . . . . . . . . 13
5.3.11 e_randb_get_sensor . . . . . . . . . . . . . . . . . . . . . 13

5.4 UART Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4.1 e_randb_set_uart_communication . . . . . . . . . . . . 13
5.4.2 e_randb_uart_set_range . . . . . . . . . . . . . . . . . . 13
5.4.3 e_randb_uart_set_calculation . . . . . . . . . . . . . . . 14
5.4.4 e_randb_uart_store_light_conditions . . . . . . . . . . . 14
5.4.5 e_randb_uart_store_data . . . . . . . . . . . . . . . . . 14
5.4.6 e_randb_uart_send_data . . . . . . . . . . . . . . . . . . 14
5.4.7 e_randb_uart_send_all_data . . . . . . . . . . . . . . . 15
5.4.8 e_randb_get_data_uart . . . . . . . . . . . . . . . . . . 15
5.4.9 e_randb_get_uart2 . . . . . . . . . . . . . . . . . . . . . 15

6 e-Puck Examples 15
6.1 I2C Emission/Reception . . . . . . . . . . . . . . . . . . . . . . . 16

6.1.1 I2Cemitter . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.1.2 I2Creceiver . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 UART Emission/Reception . . . . . . . . . . . . . . . . . . . . . 19
6.2.1 UARTemitter . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.2 UARTreceiver . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 UART Emission/Reception Through All Sensors . . . . . . . . . 22
6.3.1 UARTemitter . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4 I2C Frame Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4.1 I2C Frame Rate Emitter . . . . . . . . . . . . . . . . . . . 24
6.4.2 I2C Frame Rate Receiver . . . . . . . . . . . . . . . . . . 26
6.4.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.5 UART Frame Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5.1 UART Frame Rate Receiver . . . . . . . . . . . . . . . . . 29
6.5.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Problems Reported 31
7.1 IR Proximity interference . . . . . . . . . . . . . . . . . . . . . . 31
7.2 e-jumper vs. UART Communication . . . . . . . . . . . . . . . . 31

8 Contact 32

2



1 Introduction
We have designed and built a new open hardware/software board that lets
miniaturized robots communicate and at the same time obtain the range and
bearing of the source of emission. The open E-puck Range & Bearing board im-
proves an existing infrared relative localization/communication software library
(libIrcom)1 developed for the e-puck robot2 and based on its on-board infrared
sensors. The board allows the robots to have an embodied, decentralized and
scalable communication system.

1.1 What you can do with it
With the E-puck Range & Bearing board you are able to have local commu-
nication between robots. It is based on infrared communication, so a direct
vision is needed between two robots communicating. The board o�ers many
di�erent features. For example, a emitting robot transmit a 16 bits data frame.
The robots which receive the frame extract the 16 bits data and calculates
the distance (range) and orientation (bearing) to the emitter robot. Moreover,
the board allows you to modify the range of transmission from 0 cm to 80 cm 3.
Therefore, you can tune the communication range according to your experiment
needs. Finally, because of the existence of many di�erent extension modules for
the e-puck robot, we have implemented two di�erent communication buses (I2C
and UART), with which you are able to communicate the board and the robot.

1.2 How to get it work
Getting the E-puck Range & Bearing board working is very simple. You need
to plug the E-puck Range & Bearing board on the robot. You can do it either
on the main robot board or any other extension board which has the two main
black connectors on the top. Once you have done it, you are ready to work with
the E-puck Range & Bearing board. We suggest you to take a look at Section 6
were you will �nd some test examples.

1.3 Where to get it
Actually, RBZ Robot Design is the company who is selling the E-puck Range
& Bearing board. However, you are able to build the E-puck Range & Bearing
board by yourself. Go to the o�cial e-puck website where you will �nd all the
information about it.

1http://www.e-puck.org/index.php?option=com_content&task=view&id=62&Itemid=89
2http://www.e-puck.org
3These values depend on the light conditions.

3

http://www.rbz.es


2 Hardware
The designed E-puck Range & Bearing board (see Figure 1) is controlled by its
own processor. Each board includes 12 sets of IR emission/reception modules.
Each of these modules is equipped with one infrared emitting diode, one infrared
modulated receiver and one infrared photodiode4: The modules, as shown in
Figure 2, are nearly uniformly distributed on the perimeter of the board; so, the
distance between them is approximately 30◦.

(a) (b)

Figure 1: (a) Top and (b) bottom view of the E-puck Range & Bearing board.

EMI1
EMI2

EMI10

EMI12

EMI4

EMI3

EMI5

EMI6 EMI8

EMI9

EMI11

EMI7

0º

270º90º

63º

30º

120º

146º
210º

240º

297º

330º

171º

REC11

REC8

REC7

REC5

REC4

REC2

REC10

REC9

REC6

REC3

REC1 REC12 310º

283º

255º

225º

195º
159º

133º

105º

75º

15º

50º

345º

(a) (b)

Figure 2: (a) Emitters and (b) receivers distribution around the perimeter of
the board.

For the correct understanding of the localization and communication system
and its replication or modi�cation possibilities, the forthcoming subsections
detail the di�erent hardware modules implemented in the board.

2.1 Power Supply Module
The board can be powered from 2.5V to 6V. Once the board is switched on,
three isolated power lines are created: one for the digital system, one for the

4For an exhaustive description of the board see http://www.rbz.es/randb/.

4



analog and the last one for the emission module. The three power lines are
obtained from two di�erent supplies.

The �rst power supply is in charge of the emission module. This supply is
based on a low dropout linear regulator which allows a voltage variation between
0.8V and 3.46V. This power variation lets the board modify its emission range.
The regulator is connected to a digital SPI potentiometer which varies the load of
the ADJ pin modifying the output of the source. Thanks to this digital variable
resistor the emission range and power consumption can be software
controlled.

The second power supply is in charge of the rest of the electronics including
the microcontroller. Analog and digital lines, both of 3.3V, are separated and
short circuited just in one point to reduce noise.

The power consumption of the board depends on the settings of the emission
power supply.

2.2 Emission Module
The emission module is composed of 12 di�erent emitters. Each sensor set is
composed of a narrow beam infrared led and logic gates to create the modula-
tion.

Communication is based on frequency modulation with data at 10KHz over
a carrier of 455KHz (see Figure 3 for more details).

PROCESSOR

IR1

IR2

IR12

Data 1

Data 12

Carrier

Data 2

(455KHz)

10KHz

Figure 3: Emission module diagram.

The modi�cation of the Vemis power supply changes the current that passes
through the emitter modifying the emission range. For a minimum value of
0.8V, a 0 cm range is achieved while the maximum range is approximately 80 cm
for Vemis=3.46V.

2.3 Reception Module
The reception module is divided in two di�erent submodules. A �rst submodule
is in charge of the data reception while the second one takes care of detecting
the intensity of the signal. The division in two submodules allows the board to
receive data independently of the signal intensity. In the �rst module, the board
is able to work as a simple communication system, where the data are demodu-
lated and received without the extraction of the emitters location. The second
submodule measures the intensity of infrared signals during the reception of a

5



frame. To ensure a proper measure of the signal intensity, intensity and demod-
ulating sensors must have the same orientation and are therefore positioned on
top of each other.

The data reception submodule is based on a miniaturized infrared receiver
for remote control. The signals are received trough digital inputs in the micro-
controller.

The signal intensity submodule is based on a PIN diode and two operational
ampli�ers. When the photodiode starts receiving infrared signals, the circuit
starts charging. The outputs from the peak detector face 12 analog to digital
converters in the microcontroller.

2.4 Communication Module
The communication module has been designed to be the slave of a main proces-
sor system. Two buses, I2C and RS232, have been incorporated for facilitating
the use of the board. In both communication types, the master has the control
of the emission range. The modi�cation of the power supply output can be
ordered at anytime and results in an immediate modi�cation of the emission
range.

2.4.1 I2C bus
In the I2C communication, the E-puck Range & Bearing board acts as slave of
the main processor system. The board takes care of the requests of transmission
and is continuously checking for incoming frames. The main processor system
polls continuously the board to check if any communication has been received.

2.4.2 UART
In the UART communication, interruptions are enabled in both directions. The
master board is able to send orders of transmission or range modi�cations. Once
a frame is demodulated by the communication board, it interrupts the master
and transmits the demodulated data, the estimated angle and the distance to
the emitter.

2.5 Board Con�gurations
2.5.1 TV Remote Receiver
Because the E-puck Range & Bearing was developed with the intention of re-
moving the e-jumper board for those who do not want the speaker capabilities,
we have replicated the IR TV Remote receiver (see Figure 4). This signal en-
ters the robot main connectors and is attached to the same pin as the e-jumper
board. Therefore, the receiver works in the same way and it supplants the one
on the e-jumper board.

6



Figure 4: TV remote receiver.

2.5.2 E-puck Range & Bearing to e-puck UART communication
As aforementioned, there is the possibility of communicate the E-puck Range
& Bearing with the e-puck through the UART. However, since other extension
modules do also use the UART, there is a 4 positions microswitch which allows
the connection/disconnection of the UART lines. In the S1 microswitch you
should put PIN2 and PIN3 OFF if you want to disable this connection (see
Figure 5). The connection is enabled by default.

O
N 3

4
1

2

O
N 3

4
1

2

(a) (b)

Figure 5: E-puck Range & Bearing to e-puck UART communication switch
con�guration. (a) Communication enabled. (b) Communication disabled.

2.5.3 E-puck Range & Bearing to PC UART communication
We have also enable a communication with a computer. In the same way the
robot is able to communicate with a PC, the board is able to do it too. However,
there are some restrictions. Because of the lack of space on the board, we had
used the MAX232 already provided on the robot. Therefore, we are not able to
communicate a computer with both the robot and the board at the very same
time. By default, the communication with the board is enabled, disabling the
one with the robot. If you want to disable this option, you should put PIN1
and PIN4 of the S1 microswitch to OFF (see Figure 6). The communication is
enabled by default. (The robot already has a bluetooth to communicate with a

7



PC). You are able to extract the signals from PIN1 (TX), PIN2 (RX) and PIN3
(GND), from the X5 4 pins micromatch red connector (see Figure 7).

O
N 3

4
1

2

O
N 3

4
1

2

(a) (b)

Figure 6: E-puck Range & Bearing to PC UART communication switch con�g-
uration. (a) Communication enabled. (b) Communication disabled.

Figure 7: UART connector.

2.6 Di�erent Versions
Actually there are 2 di�erent versions of the board, version C and version D.
They perform approximately the same, however there are some di�erences on
the hardware.

• Version C:

� IR Emitters have their nominal half intensity angle at ±20◦ (They
are small and gold emitters found in the top side of the board).

• Version D

� IR Emitters have their nominal half intensity angle at ±60◦ (They
are the white emitters found in the top side of the board).

8



� IR Peak Receivers have been split. Each peak receptor module is
made up of 3 photodiodes which information is combined and ex-
tracted as one sole sensor. Therefore, there are 12 sets of 3 photodi-
odes.

3 Installing the E-puck Range & Bearing Board
To install the E-puck Range & Bearing board, you just need to unscrew the
3 screws which join the e-jumper board and the e-puck . After it, you must
unplugged the e-jumper board and plug the E-puck Range & Bearing instead.
You can plug again the e-jumper board on the top of the E-puck Range &
Bearing board. However, take a look at Section 7 to see the incompatibilities
between the two boards.

4 Firmware
Once the board is initialized, a pulse-width modulation (PWM) timer is ini-
tialized with a period of 1.09µs. This timer creates the carrier of the emission
module which will not be stopped until the board is powered down. A Manch-
ester code is implemented to allow any data sent at a certain distance to be
received with the same intensity by the receiver. The timer, which takes care
of the modulated signal, interrupts each 100µs. The implementation of the
Manchester code allows a maximum data rate of 5 kbps. Each interruption of
this timer takes the bu�ered data and sends it to the hardware gates for its
transmission. Data for transmission is stored in a bu�er correctly structured
according to the hardware pinout. Three di�erent types of transmission can be
asked to the communication board:

• All the sensors transmit the same data: One instruction is sent to
the board, along with the data to transmit.

• Only some sensors transmit data: One instruction for each sensor
must be sent to the board. Data and sensor number must also be provided
to the board. After all the sensors have been loaded, a �send� instruction
must be sent to the board.

• Di�erent sensors transmit di�erent data: One instruction for each
sensor must be sent to the board. Data and sensor number must also be
provided to the board. After all the sensors have been loaded, a �send�
instruction must be sent to the board.

Once a transmission order is sent by the master to the board, the communi-
cation module is in charge of decomposing the data for the di�erent sensors with
a preamble (6 bits), the data (16 bits) and a CRC (4 bits). If the master needs
to transmit a �ow of data, the communication module bu�ers all the messages
one after the other, in a transparent manner for the transmission timer.

9



The reception software is continuously checking if a message arrives. Once
the preamble of a frame is detected by an infrared modulated receiver, the
board continues receiving the data and CRC while it is charging a peak detector
through an infrared photodiode. If the frame has correctly arrived (checked by
the CRC), the peak detector level is read and stored in a bu�er. As the aperture
of the receiving sensor is wide, it is likely that several sensors receive the same
data at the same time. The information given by the di�erent peak detectors is
used to calculate the orientation and distance to the emitter. These two values
are then stored in a bu�er to be sent to the master board. Figure 8 shows a
block diagram of the emission and reception software modules.

(a) (b)

Figure 8: Block diagram of the (a) software emission module and (b) software
reception module.

Infrared noise comes mainly from light conditions in the environment. To
deal with it, the board measures at the beginning the infrared signal in the
environment. Once a frame is correctly received, the board subtracts the en-
vironment measure from the peak receptor and returns it as the frame signal
intensity.

5 e-RandB Libraries
In this section we describe the libraries created for the e-Puck to communicate
with the E-puck Range & Bearing board.

10



Following the actual convention of the code we have placed the libraries
in the src/Ep� directory. In this directory we �nd the libraries in e_randb.h
and e_randb.c. We clearly di�erentiate 3 parts inside the library: The functions
related to the I2C, the functions related to the UART and the functions common
to both. In what follows we describe all of them.

5.1 Common Functions
5.2 e_init_randb
Description This function initializes the I2C or UART communica-

tions. It is mandatory to initialize the board before using
it on the examples.

Prototype void e_init_randb ( unsigned char mode )
Arguments unsigned char mode: This de�nes if the board is communi-

cated through the I2C (0) or the UART (1).
Returns void

5.3 I2C Functions
5.3.1 e_randb_set_range
Description Sets the range of transmission
Prototype void e_randb_set_range ( unsigned char distance)
Arguments unsigned char distance: De�nes the distance of transmis-

sion. 0 �> Full Range (1m. aprox., depending on light
conditions) 255 �> Shortest Range (0 cm aprox., depend-
ing on light conditions )

Returns void

5.3.2 e_randb_set_calculation
Description At some point we thought that the board could just take

data and leave the calculations for the robot. At the mo-
ment, it is better to allow the board to do the calculations.

Prototype void e_randb_set_calculation ( unsigned char value )
Arguments unsigned char value: De�nes if the calcs are made on the

board (0) or the robot (1).
Returns void

5.3.3 e_randb_store_light_conditions
Description Store light conditions to use them as o�set for the calcula-

tions of the range and bearing.
Prototype void e_randb_store_light_conditions ( void )
Arguments void
Returns void

11



5.3.4 e_randb_store_data
Description Tells the board to store some data �data� to be sent later

by sensor �channel�. We are able to store di�erent data for
di�erent sensors.

Prototype void e_randb_store_data ( unsigned char channel , un-
signed int data )

Arguments
• unsigned char channel : The sensor which will send

the data.

• unsigned int data: The data to be sent by the sensor.

Returns void

5.3.5 e_randb_send_data
Description Tells the board to send all the data stored previously with

e_randb_store_data. Because di�erent data could have
been stored for di�erent sensors, all the di�erent data can
be sent by di�erent sensors at the very same time.

Prototype void e_randb_send_data ( void )
Arguments void
Returns void

5.3.6 e_randb_send_all_data
Description Tells the board to send the data "data" through all the

sensors
Prototype void e_randb_send_all_data ( unsinged int data)
Arguments unsigned int data: The data to be sent by all the sensors
Returns void

5.3.7 e_randb_get_if_received
Description Checks if a frame has been received on the board.
Prototype unsigned char e_randb_get_if_received( void )
Arguments void
Returns unsigned char : 0 if nothing received or 1 if a frame has been

received.

5.3.8 e_randb_get_data
Description If a frame has been received returns data.
Prototype unsigned int e_randb_get_data( void )
Arguments void
Returns unsigned int : Data received

12



5.3.9 e_randb_get_range
Description If a frame has been received returns the range.
Prototype unsigned int e_randb_get_range( void )
Arguments void
Returns unsigned int : Range to emitter.

5.3.10 e_randb_get_bearing
Description If a frame has been received returns bearing.
Prototype double e_randb_get_bearing( void )
Arguments void
Returns double: Bearing to emitter.

5.3.11 e_randb_get_sensor
Description If a frame has been received returns the sensor which has

received maximum intensity.
Prototype unsigned char e_randb_get_sensor ( void )
Arguments void
Returns unsigned char : The sensor with maximum intensity re-

ceived.

5.4 UART Functions
5.4.1 e_randb_set_uart_communication
Description Tells the board that communication is through the UART.
Prototype void e_randb_set_uart_communication ( unsigned char

mode)
Arguments unsigned char mode: Must be 1.
Returns void

5.4.2 e_randb_uart_set_range
Description Sets the range of transmission
Prototype void e_randb_uart_set_range ( unsigned char distance)
Arguments unsigned char distance: De�nes the distance of transmis-

sion. 0 �> Full Range (1m. aprox., depending on light
conditions) 255 �> Shortest Range (0 cm aprox., depend-
ing on light conditions )

Returns void

13



5.4.3 e_randb_uart_set_calculation
Description At some point we thought that the board could just take

data and leave the calculations for the robot. At the mo-
ment, it is better to allow the board to do the calculations.

Prototype void e_randb_uart_set_calculation ( unsigned char value
)

Arguments unsigned char value: De�nes if the calcs are made on the
board (0) or the robot (1).

Returns void

5.4.4 e_randb_uart_store_light_conditions
Description Store light conditions to use them as o�set for the calcula-

tions of the range and bearing.
Prototype void e_randb_uart_store_light_conditions ( void )
Arguments void
Returns void

5.4.5 e_randb_uart_store_data
Description Tells the board to store some data �data� to be sent later

by sensor �channel�.
Prototype void e_randb_uart_store_data ( unsigned char channel ,

unsigned int data )
Arguments

• unsigned char channel : The sensor which will send
the data.

• unsigned int data: The data to be sent by the sensor.

Returns void

5.4.6 e_randb_uart_send_data
Description Tells the board to send the data stored previously with

e_randb_store_data.
Prototype void e_randb_uart_send_data ( void )
Arguments void
Returns void

14



5.4.7 e_randb_uart_send_all_data
Description Tells the board to send the data "data" through all the

sensors
Prototype void e_randb_uart_send_all_data ( unsigned int data )
Arguments unsigned int data: The data to be sent by all the sensors
Returns void

5.4.8 e_randb_get_data_uart
Description If data received returns struct with the data, range, bearing,

max_peak and max_sensor of the frame received.
Prototype unsigned char e_randb_get_data_uart ( �nalDataRegis-

ter* data)
Arguments �nalDataRegister* data: Pointer to a struct where the in-

formation received and calculated will be loaded (data,
range. bearing, max_peak and max_sensor). The �nal-
DataRegister is de�ned as follows:

typedef struct {
unsigned int data;
float bearing;
unsigned int range;
unsigned int max\_peak;
unsigned char max\_sensor;

} finalDataRegister;

Returns void

5.4.9 e_randb_get_uart2
Description State machine in charged of getting the information from

the board through UART interruptions. It is started and
managed by the agenda, therefore the controller should not
access.

Prototype void e_randb_get_uart2 ( void )
Arguments void
Returns void

6 e-Puck Examples
We have developed some examples to test the boards. We hope they are OK
for the correct understanding of the board working. We provide the examples
code on this manual, however you should download the code and libraries from
XXX. We have commented the code for its clari�cation.

15



6.1 I2C Emission/Reception
6.1.1 I2Cemitter
This �le is the main.c of randbEmitter directory. This code should be loaded
into a robot which will be the emitter robot. The emitter robot will send frames
from 0 to 65535 with non-stop through the emitter sensor number 0. Once the
data to be sent reaches 65535 it is reseted to 0, and the robot continues sending
frames.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <btcom.h>
#include <e_randb.h>
#include <e_prox.h>
#include <e_uart_char.h>
#include <e_init_port.h>

int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(I2C);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_set_range(0);

/* At some point we 06 that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

e_randb_set_calculation(ON_BOARD);

/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_store_light\_conditions();
/* Print on the bluetooth */
char tmp2[50];
sprintf(tmp2,"I2C EMITTER\n");

16



btcomSendString(tmp2);

/* The counter for sending */
unsigned int data = 0;

while(1)
{

/* Send the data through sensor 0*/
e_randb_store_data(0,data);
e_randb_send_data();

/* Increase data */
data++;

/* Data to be sent must be lower than 16 bits */
if(data==65535) data=0;

}
return 0;

}

6.1.2 I2Creceiver
This �le is the main.c of randbReceiver directory. This code should be loaded
into a robot which will be the receiver robot. The receiver robot is checking for
a frame to be received. Once it is received the robot gets the data, range and
bearing and prints it into the bluetooth interface.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <btcom.h>
#include <e_randb.h>
#include <e_prox.h>
#include <e_uart_char.h>
#include <e_init_port.h>

#define M_PI 3.141593
int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(I2C);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want

17



* the bluetooth stack stuck for programing mode */
btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_set_range(150);

/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

e_randb_set_calculation(ON_BOARD);

/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_store_light_conditions();

/* Print on the bluetooth */
char tmp2[50];
sprintf(tmp2,"I2C RECEIVER\n");
btcomSendString(tmp2);

/* The counter for sending */
unsigned int data = 0;
while(1)
{

/* If something received */
if(e_randb_get_if_received() != 0)
{

/* Get data */
unsigned int data = e_randb_get_data();
/* Get bearing */
double bearing = e_randb_get_bearing();
/*Get range */
unsigned int range = e_randb_get_range();

/* Print data received on the bluetooth */
sprintf(tmp2,"%u %2f %u", data, (bearing*180/M_PI), range);
btcomSendString(tmp2);
btcomSendString("\n");

}
}
return 0;

}

6.1.3 Testing
You must load I2Cemitter code to one robot and I2Creceiver code to a second
robot. As you have seen in the code, the robots are waiting for a command

18



's' to be received through the bluetooth. You can use the ircomTest program
provided with the examples code on the pc directory, or create your own code to
send this command. In any case, you need to have a bluetooth communication
where the robots will print the messages.

If you use the ircomtTest program provided you need to map your robot
MAC address in the /etc/bluetooth/rfcomm.conf. For example, open /etc/blue-
tooth/rfcomm.conf and add

rfcomm19{device 10:00:11:06:E5:34;}

Now type:

./ircomtTest 19.

You must do the same with the second robot. After executing the command,
the program is waiting for the return key to be pressed. When pressed the
program will send the command 's' and the robot should start working. You
should start the receiver robot �rst. It will print �I2C RECEIVER� and wait for
frames to be received. If you start now the second robot, it should print �I2C
EMITTER�. If once the emitter robot is initialized, you point emitter sensor 0
(the one in the front) of the emitter robot to the receiver robot, the later will
print the data, range and bearing on the screen.

6.2 UART Emission/Reception
6.2.1 UARTemitter
This �le is the main.c of randbEmitterUart directory. This code should be
loaded into a robot which will be the emitter robot. The emitter robot will send
frames from 0 to 65535 with non-stop through emitter sensor 0. Once the data
sent arrives to 65535 it is reseted to 0, and the robot continues sending frames.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <btcom.h>
#include <e_randb.h>
#include <e_agenda.h>
#include <e_prox.h>

#include <e_uart_char.h>
#include <e_init_port.h>

int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();

19



/* Init E-RANDB board */
e_init_randb(UART);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_uart_set_range(0);

/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

e_randb_uart_set_calculation(ON_BOARD);

/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_uart_store_light_conditions();

/* Print on the bluetooth */
char tmp2[50];
sprintf(tmp2,"UART EMITTER\n");
btcomSendString(tmp2);

/* The counter for sending */
unsigned int data = 0;

while(1)
{

/* Send the data through sensor 0*/
e_randb_uart_store_data(0,data);
e_randb_uart_send_data();

/* Increase data */
data++;

/* Data to be sent must be lower than 16 bits */
if(data==65535) data=0;

}
return 0;

}

6.2.2 UARTreceiver
This �le is the main.c of randbReceiverUart directory. This code should be
loaded into a robot which will be the receiver robot. The receiver robot is

20



checking for a frame to be received. Once it is received the robot prints the
data, range and bearing into the bluetooth interface.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include <e_uart_char.h>
#include <e_init_port.h>
#include <e_led.h>
#include <e_randb.h>
#include <e_agenda.h>
#include <e_prox.h>

#include <btcom.h>

#define M_PI 3.141593
int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(UART);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_set_range(150);

/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

e_randb_set_calculation(ON_BOARD);

/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_store_light_conditions();

/* Print on the bluetooth */
char tmp[20];
sprintf(tmp,"UART RECEIVER\n");
btcomSendString(tmp);

21



finalDataRegister data;
while(1)
{

if (e_randb_get_data_uart(&data))
{

sprintf(tmp,"%d %d %d\n",data.data,
(int) (data.bearing * 180.0 / M_PI), data.range);

btcomSendString(tmp);
}

}
return 0;

}

6.2.3 Testing
You must load UARTemitter code to one robot and UARTreceiver code to a sec-
ond robot. As you have seen in the code, the robots are waiting for a command
's' to be received through the bluetooth. You can use the ircomTest program
provided with the examples code on the pc directory, or create your own code to
send this command. In any case, you need to have a bluetooth communication
where the robots will print the messages.

If you use the ircomtTest program provided you need to map your robot
MAC address in the /etc/bluetooth/rfcomm.conf. For example, open /etc/blue-
tooth/rfcomm.conf and add

rfcomm19{device 10:00:11:06:E5:34;}

Now type:

./ircomtTest 19.

You must do the same with the second robot. After executing the command,
the program is waiting for the return key to be pressed. When pressed the
program will send the command 's' and the robot should start working. You
should start the receiver robot �rst. It will print �UART RECEIVER� and wait
for frames to be received. If you start now the second robot, it should print
�UART EMITTER�. If once the emitter robot initialized, you point emitter
sensor 0 (the one in the front) to the receiver robot, it will print the data, range
and bearing on the screen.

6.3 UART Emission/Reception Through All Sensors
6.3.1 UARTemitter
This �le is the main.c of randbEmitterUartAll directory. This code should be
loaded into a robot which will be the emitter robot. The emitter robot will send
frames from 0 to 65535 with non-stop through all emitter sensors. Once the

22



data sent arrives to 65535 it is reseted to 0, and the robot continues sending
frames.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <btcom.h>
#include <e_randb.h>
#include <e_agenda.h>

#include <e_uart_char.h>
#include <e_init_port.h>

int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(UART);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_uart_set_range(150);

/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

e_randb_uart_set_calculation(ON_BOARD);

/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_uart_store_light_conditions();

/* Print on the bluetooth */
char tmp2[50];
sprintf(tmp2,"ALL SENSORS EMITTER\n");
btcomSendString(tmp2);

/* The counter for sending */
unsigned int data = 0;

23



while(1)
{

/* Send the data through all the sensors */
e_randb_uart_send_all_data(data);

/* Increase data */
data++;

/* Data to be sent must be lower than 16 bits */
if(data==65535) data=0;

}
return 0;

}

6.3.2 Testing
You should use the UARTReceiver or I2CReceiver code as receiver. The pro-
gram testing is solved as in the previous examples.

6.4 I2C Frame Rate
We have observed the computer takes time printing the information provided
by the robot. Therefore, the bluetooth communication delays the reception and
the bu�er gets full. We have create two more examples to test the frame rate
achieved by the E-puck Range & Bearing board. In this case, we are testing
the I2C frame rate. The robot will receive the frames but will not print them
Instead, we have started a timer on the robots which will count the frames
received and print the number each 10 seconds. We will observe the frame rate
achieved with the I2C communication is something between 30-40 messages per
second.

6.4.1 I2C Frame Rate Emitter
This �le is the main.c of randbEmitterTiming directory. This code should be
loaded into a robot which will be the emitter robot. The emitter robot will send
frames from 0 to 65535 with non-stop through emitter sensor 0. Once the data
sent arrives to 65535 it is reseted to 0, and the robot continues sending frames.
The robot prints out the number of frames sent each 10 seconds.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <btcom.h>
#include <e_randb.h>
#include <e_epuck_ports.h>

24



#include <e_uart_char.h>
#include <e_init_port.h>

#define SAMPLING_TIME 10 /* milliseconds*/
long int m_uTime;

void initTimer ( void )
{

T3CON = 0; //
T3CONbits.TCKPS = 3; // prescsaler
TMR3 = 0; // clear timer 3
PR3 = (SAMPLING_TIME * MILLISEC)/256.0;
IFS0bits.T3IF = 0; // clear interrupt flag
IEC0bits.T3IE = 1; // set interrupt enable bit
IPC1bits.T3IP = 6; // timer3 priority. Priority set to 6
T3CONbits.TON = 1; // start Timer3

m_uTime = 0;
}

void _ISRFAST _T3Interrupt(void)
{

/* clear interrupt flag */
IFS0bits.T3IF = 0;

m_uTime++;
}

int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(I2C);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_set_range(0);

/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

25



e_randb_set_calculation(ON_BOARD);
/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_store_light_conditions();

/* Print on the bluetooth */
char tmp2[50];
sprintf(tmp2,"I2C EMITTER Timming\n");
btcomSendString(tmp2);

/* The counter for sending */
unsigned int data = 0;

int counter=0;

/* Init time to count time */
initTimer();

while(1)
{

/*if ((m_uTime%100) == 0)*/
/*{*/
if((m_uTime%1000)==0)
{

sprintf(tmp2,"%d", counter);
btcomSendString(tmp2);
btcomSendString("\n");
counter = 0;

}

/* Send data to one sensor */
e_randb_store_data(0,data);
e_randb_send_data();

/* Increase the data */
data++;
counter++;

/* Data to be sent must be lower than 16 bits */
if(data==65535) data=0;

}
return 0;

}

6.4.2 I2C Frame Rate Receiver
This �le is the main.c of randbReceiverTiming directory. This code should
be loaded into a robot which will be the receiver robot. The receiver robot is
checking for a frame to be received. Once it is received the robot increases a

26



counter. After 10 seconds the robot prints the number of frames received.

#include <string.h>
#include <math.h>
#include <btcom.h>
#include <e_randb.h>
#include <e_epuck_ports.h>

#include <e_uart_char.h>
#include <e_init_port.h>

#define M_PI 3.141593
#define SAMPLING_TIME 10 /* milliseconds*/

long int m_uTime;

void initTimer ( void )
{

T3CON = 0; //
T3CONbits.TCKPS = 3; // prescsaler
TMR3 = 0; // clear timer 3
PR3 = (SAMPLING_TIME * MILLISEC)/256.0;
IFS0bits.T3IF = 0; // clear interrupt flag
IEC0bits.T3IE = 1; // set interrupt enable bit
IPC1bits.T3IP = 6; // timer3 priority. Priority set to 6
T3CONbits.TON = 1; // start Timer3

m_uTime = 0;
}

void _ISRFAST _T3Interrupt(void)
{

/* clear interrupt flag */
IFS0bits.T3IF = 0;

m_uTime++;
}

int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(I2C);

/* Wait for a command coming from bluetooth IRCOMTEST on pc directory*/
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

27



btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_set_range(150);

/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

e_randb_set_calculation(ON_BOARD);
/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_store_light_conditions();

/* Print on the bluetooth */
char tmp2[50];
sprintf(tmp2,"I2C RECEIVER Timing\n");
btcomSendString(tmp2);

/* Init timer to count time */
initTimer();

int counter=0;
while(1)
{

if((m_uTime%1000)==0)
{

sprintf(tmp2,"%d", counter);
btcomSendString(tmp2);
btcomSendString("\n");
counter = 0;

}

/* If something received */
if(e_randb_get_if_received() != 0)
{

/* Get data */
unsigned int data = e_randb_get_data();
/* Get bearing */
double bearing = e_randb_get_bearing();
/*Get range */
unsigned int range = e_randb_get_range();

counter++;
}

}
return 0;

}

28



6.4.3 Testing
The program testing is solved as in the previous examples.

6.5 UART Frame Rate
This test checks the frame rate achieved when a UART communication is estab-
lished. We will observe the frame rate achieved with the UART communication
is something between 120-130 messages per second. The increase observed with
respect to the I2C is because the robot is obtaining the information from the
board by means of interruptions and it has not to be asking the board continu-
ously.

6.5.1 UART Frame Rate Receiver
This �le is the main.c of randbReceiverUartTiming directory. This code should
be loaded into a robot which will be the receiver robot. The receiver robot is
checking for a frame to be received. Once it is received the robot increases a
counter. After 10 seconds the robot prints the number of frames received.

#include <p30f6014a.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include <e_uart_char.h>
#include <e_init_port.h>
#include <e_led.h>
#include <e_randb.h>
#include <e_agenda.h>
#include <e_epuck_ports.h>

#include <btcom.h>

#define SAMPLING_TIME 10 /* milliseconds*/

long int m_uTime;

void initTimer ( void )
{

T3CON = 0; //
T3CONbits.TCKPS = 3; // prescsaler
TMR3 = 0; // clear timer 3
PR3 = (SAMPLING_TIME * MILLISEC)/256.0;
IFS0bits.T3IF = 0; // clear interrupt flag
IEC0bits.T3IE = 1; // set interrupt enable bit
IPC1bits.T3IP = 6; // timer3 priority. Priority set to 6
T3CONbits.TON = 1; // start Timer3

29



m_uTime = 0;
}

void _ISRFAST _T3Interrupt(void)
{

/* clear interrupt flag */
IFS0bits.T3IF = 0;

m_uTime++;
}
int main() {

/* System Initialization */
e_init_port();
/* Init UART1 for bluetooth */
e_init_uart1();
/* Init E-RANDB board */
e_init_randb(UART);

/* Wait for a command coming from bluetooth */
/* Important issue when we are transmitting data and don't want
* the bluetooth stack stuck for programing mode */

btcomWaitForCommand('s');

/* Range is tunable by software.
* 0 -> Full Range (1m. approx depending on light conditions )
* 255 --> No Range (0cm. approx, depending on light conditions */

e_randb_set_range(150);
/* At some point we thought that the board could just take
* data and leave the calculations for the robot.
* At the moment, it is better to allow the board to do the calculations */

/*e_randb_set_calculation(ON_ROBOT);*/
e_randb_set_calculation(ON_BOARD);

/* Store light conditions to use them as offset for the calculation
* of the range and bearing */

e_randb_store_light_conditions();

/* Print on the bluetooth */
char tmp[50];
sprintf(tmp,"UART RECEIVER Timing\n");
btcomSendString(tmp);

finalDataRegister data;

initTimer();

int counter=0;

while(1)

30



{
if((m_uTime%1000)==0)
{

sprintf(tmp,"%d", counter);
btcomSendString(tmp);
btcomSendString("\n");
counter = 0;

}

if (e_randb_get_data_uart(&data))
{

counter++;
}

}
return 0;

}

6.5.2 Testing
The program testing is solved as in the previous examples. You can load any
emitter code on the emitter robot.

7 Problems Reported
Di�erent problems with the E-puck Range & Bearing board have been reported
by di�erent groups. Please read carefully the following sections.

7.1 IR Proximity interference
Because the E-puck Range & Bearing board communicates through IR there
are interferences when the proximity sensors are activated. If you test you
examples, you will see that the data of the frames arrive perfectly, because the
information is modulated. However, there will be a disruption on the range and
bearing calculation. Some people is solving the issue stopping the IR proximity
sensors when they are not used.

7.2 e-jumper vs. UART Communication
Some groups are detecting problems when working with the E-puck Range &
Bearing board and the e-jumper board is plugged. The problem is because the
e-jumper board is shortcircuting some lines which are used by the E-puck Range
& Bearing board when it is on UART mode. You will be unable to communicate
with the E-puck Range & Bearing board if you have PIN1 and PIN4 of the four
positions switch (S1) ON at the same time than the e-jumper board is plugged.
If you put them OFF, things will work. Some groups have reported that even
with the S1 change, somes boards are not able to communicate through the

31



UART, while others do. At the time of writing we have not solved this issue,
we must check where is the mystery.

8 Contact
The board has been designed by Álvaro Gutiérrez, Alexandre Campo and the
RBZ Robot Design company. If you have some problems or want information
about how to build or buy the boards, please contact:
Álvaro Gutiérrez: aguti@etsit.upm.es
Alexandre Campo: alexandre.acampo@ulb.ac.be

32


	Introduction
	What you can do with it
	How to get it work
	Where to get it

	Hardware
	Power Supply Module
	Emission Module
	Reception Module
	Communication Module
	I2C bus
	UART

	Board Configurations
	TV Remote Receiver
	E-puck Range & Bearing to e-puck UART communication
	E-puck Range & Bearing to PC UART communication

	Different Versions

	Installing the E-puck Range & Bearing Board
	Firmware
	e-RandB Libraries
	Common Functions
	e_init_randb
	I2C Functions
	e_randb_set_range
	e_randb_set_calculation
	e_randb_store_light_conditions
	e_randb_store_data 
	e_randb_send_data
	e_randb_send_all_data
	e_randb_get_if_received
	e_randb_get_data
	e_randb_get_range
	e_randb_get_bearing
	e_randb_get_sensor

	UART Functions
	e_randb_set_uart_communication
	e_randb_uart_set_range
	e_randb_uart_set_calculation
	e_randb_uart_store_light_conditions
	e_randb_uart_store_data 
	e_randb_uart_send_data
	e_randb_uart_send_all_data
	e_randb_get_data_uart
	e_randb_get_uart2


	e-Puck Examples
	I2C Emission/Reception
	I2Cemitter
	I2Creceiver
	Testing

	UART Emission/Reception
	UARTemitter
	UARTreceiver
	Testing

	UART Emission/Reception Through All Sensors
	UARTemitter
	Testing

	I2C Frame Rate
	I2C Frame Rate Emitter
	I2C Frame Rate Receiver
	Testing

	UART Frame Rate
	UART Frame Rate Receiver
	Testing


	Problems Reported
	IR Proximity interference
	e-jumper vs. UART Communication

	Contact

